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Abstract-—An investigation on the free fexural vibration of symmetric angle-ply thin trapezoidal
plates continuous over arbitrarily distributed point supports is reported. A hybrid energy approach
which combines the ph-2 Rayleigh -Ritz method with the Lagrangian multiplier method is proposed
for the modelling of the aforementioned plate problem. The ph-2 Rayleigh-Ritz method uses a set
of Ritz functions gencrated from the product of a two-dimensional polynomial and the equations
of boundaries cuch raised to the power of 0, 1 or 2 corresponding to a free, simply-supported or
clamped edge, respectively. The geometric boundary conditions associated with the point supports
are satistied through the use of Lagrangian multipliers. In this paper. some new solutions for the
natural frequencies of several laminated trapezoidal plates with ditferent stacking sequences and
location of pomt supports are presented. The first known mode shapes by means of coatour plots
for such hanmnated plates are also included.

NOTATION
ac lengths of two paraliel sides of trapezoidal plate (see Figo 1)
b height of trapezoidal plate
C. coctlicients
{D} bending stitfness coctlicients
D, ERI2E v ,0,)
ELE, Young's moduli parallel to and perpendicular to fibres
h plite thickness
K} bending curvatures
[Al} moment resultants
P degree set of polynomial space
R plate domain
T maximum kinetic energy
vV maxinmum strain cnergy
W(E. ) displacement function
Xy Cartestan coordinates
B fibre vrientation angle
D ({0 basic function
7 vih
i frequency parameter {(phe’ a1 D)
o density per unit area of plate
Vi vy Poisson’s ratios
w natural radian frequency
I'4 xla.

L. INTRODUCTION

Only limited rescarch work has been reported in the open literature concerning the free
flexural vibrations of thin symmetrically laminated trapezoidal plates. However the practical
applications of such laminates in aircraft and acrospace industrics arc very important
because lighter and stiffer structures may be built as the composite materials are utilized.
For static and dynamic analyses, the analytical or exact solutions to the symmetric
angle-ply thin plates are difficult (and perhaps impossibie) duce to the presence of odd
derivatives in the governing differential equation of motion. In the open literature, only a
few exact vibration solutions for laminated cross-ply simply-supported rectangular plates
are available (Whitney and Leissa. 1969 Lin and King. 1974 ; Baharlou and Leissa, 1987).
A recent publication by Leissa and Narita (1989} has presented a set of comprehensive
approximate Ritz-vibration solutions for symmetrically laminated thin simply-supported
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rectangular plates. Following that Chow er «f. (1992) have proposed a set of two-dimen-
sional orthogonal polvnomial functions (Liew, 1990 Liew and Lam, 1991) which is used
as the admissible displacement function in the Rayleigh -Ritz method to study the vibration
of the symmetric angle-ply rectangular plates with any possible combination of classical
edge support conditions. Some numerical results for the natural frequencies and mode
shapes of such plates were presented.

For vibration of symmetric angle-ply thin plates of other shapes, only a few papers
can be found in the open literature. Nair and Durvasula (1974) have presented a formulation
based on the orthotropic plate theory with arbitrary orientation of principal axes of ortho-
tropy. Natural frequencies for several single-layer composite skew plates were presented.
Some numerical results for a fully clamped single-luyer skew plate subjected to in-plane forces
have been published by Srinivasun and Ramachandran (1975). Recently Liew (1992) has
presented a study on the free vibration of symmetric angle-ply trapezoidal plates using a
set of two-dimensional orthogonal polynomiuls in the Rayleigh-Ritz method. Natural
frequencies and mode shapes for several cantilever trapezoidal plates were obtained. The
method was further extended to study the same problem but with internal elastic point
constraints by modifying the general energy functional with an additional term which
associated with the elastic springs (Licw and Lam, 1992). An investigation into the effects
of clastic spring constants on the natural frequencies and mode shapes of symmetrically
laminated trapezowdal plates was carried out.

This paper extends the carlier work by the author (Liew, 1992) to study the free
vibration analysis of symmetric angle-ply trapezoidal plates with point supports arbi-
trarily distributed inside the plate domain or along the edges. The present study deals with
plates on simple point supports (deflection, w = 0) which is different trom the work by
Liew and Lam (1992) who considered the plates supported by clastic points. Of course, by
considering the clastic stilfness to be large, it leads to the same solutions as the present
approach. One should note that as the elastic points increase, unstable solutions may be
encountered due to the large stiffness resulting trom the farge spring constants assumed.
This scthback will not be encountered in the hybrid energy approach.

The present analysis is performed using a hybrid ph-2 Rayleigh -Ritz-Lagrangian
multiplicr approach. In the Rayleigh Ritz method, the admissible displacement function
{Liew and Wang, 1992) criployed is 2 set of ph-2 Ritz functions which consists of the
product of a two-dimensional polynomial (p-2) and a basic function (4). The basic function
is the product of the equations of the piccewise continuous boundary shape cach raised to
the power of 0, 1 or 2, corresponding to a free, simply-supported or clumped edge, respec-
tively. The set of functions generated automatically satisfies the geometric boundary con-
ditions of the plate at the outset. For the geometric boundary conditions of zero deflections
{w = 0) associated with the point supports are satisfied by introducing the Lagrangian
multipliers.

Several trapezoidal plates with different numbers of layers, stacking sequences and
point locations are studied. The examples considered by Liew and Lam (1992) are also
solved to serve as the purpose of comparison. Scveral new problems are introduced. The
first few natural frequency parameters and mode shapes for these new trapezoidal plates
are reported herein.

2. PROBLEM DEVINITION

Consider a thin. fibre-reinforeed composite, laminated angle-ply, points supported
trapezoidal plate lying in the vy-plane, and bounded by —a¢/2 € v € /2 and ~h/2
v € b/2, as shown in Fig. 1. The plate, with thickness /4 in the z-dircction, consists of n
layers of orthotropic plics perfectly bonded together by a matrix material. The reference
plane - = 0 is considered to be located at the undeformed middle plane as shown in Fig. 2.
The tibre direction within a layer is indicated by the angle ff. The modutus of elasticity for
the layer paralicl to the fibres is denoted by £, and perpendicular to the fibres by £,.

In the present analysis, only plates with stacking layers symmetric about the mid-plane
are considered. By this special symmetrical arrangement, the coupling between the transverse
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Fig. 1. Geometry of a trapezoidal plate with fibre direction fi; continuous over point supports.

bending and in-plane stretching is avoided. The problem is to determine the natural fre-
quencies and mode shapes for the symmetric angle-ply trapezoidal plate with arbitrarily
distributed point supports.

3. METHOD OF SOLUTION

An attempt to solve the problems is made by using the Rayleigh -Ritz approach with
i st of ph-2 Ritz functions (referred to as the ph-2 Rayleigh-Ritz method) together with
the Lagrangian multiplier method.

The strain energy for the plate due to bending can be expressed as

V= ; JJ; [(M][K]dxdy, (hH

where the integration is carried out over the entire plate domain R and

(M] =M M. M]", ()

[K] = [K. K. K], 3

in which [M] is the moment resultant and {K] is the bending curvature.
The bending curvatures are related to the displacements by

515

piane through
plate's mid-thickness

Fig. 2. Laycr coordinates and orientation for laminates.
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W
K. = 1+, 4
CX"
-2 W
K, =, (5)
¢y
W
=2
Ky éxdy ©)
For anisotropic materials, the moment resultants are given by
(M] = [D][K]. ™)

where [D] is a 3 x 3 symmetric matrix of bending stiffness coefficients.
For symmetric angle-ply laminates, the coefficients of the bending stiffness matrix are
given by

Drl =3 Z (N(’)k(/’/\‘_hk‘,[). ot = |v2\ 6~ (8)
k-1

)| —

where (N,,), is the reduced stiffness of the kth ply which is defined by the elastic constants
of the layer and fibre orientation angle ff,. The reduced stiffness for the kth ply (N,,), can
be expressed as

Nu, = Qu, cos’ i, + 2(Q1:, +2Q00,) sin® ff, cos® fi, + Qi sin' fiy, )]
Niy = (Qn, +0Q2, —40Q0,) sin® f, cos® fi, + Q5 (sin* i, +cos® ). (10)
Nll‘ = Q| 1 Sin.‘ l;k +2(Q|1A + 2QM,‘) Sin: /fk COS: I‘k + Q::‘ C()S4 l‘k‘ (l l)

Nio, = (@11, —Qiz, — 200, ) sin i cos’ I;k+(Ql2""Q!2‘+2QM»‘)SinJ Bicos i, (12)
Nip = (QIIA_QIZ‘—2QM>‘)Si“] By cos /ik‘*'(Qn:k‘Q:z“f"sz.‘)Sin B cos’ B, (13)

Neo, =(Q11,+ 022, —20Q 15, —2Q44,) sin® ff, cos® i, + Qm(Si“4 Bi+cos* ). (14)

where

£,

Qn‘ = r:‘jl;;:‘, (15)
vig Ly,

Qi = r;*v’l"jv";‘l‘ . (16)

L,
Q. = l_‘l’,.;'ll‘ amn
Q(n(!‘, = Glll' (18)
":I.El. = “lz‘E:A- (19

in which £, and E,, are the Young's moduli paraliel to and perpendicular to the fibres and
vi% and vy, are the corresponding Poisson’s ratios.
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Substituting eqns (2)-(8) into eqn (1). the strain energy becomes

1 &l CWEW &cwf Woatw
V= -— 2D, W | = 4 =3 3
ZJJ; {D“[c’x'] M D"[c‘x’ év? ]+D“[8y'] + D”’[ éx° 6.\'8}']
+4D e W 4D aud dxdy 20
*L ey exey +30%| 3 év xdy. (20)

The maximum kinetic energy of the plate during small amplitude vibration is given by

T = iphew? J:[ Wi (x. ) dedy, @n
R

where p is the mass per unit area of plate, 4 is the thickness and w is the angular frequency
of vibration.
The total energy functional for the plate can now be written as

F=V-T. (22)

The displacement function H(E. ) may be expressed as

r

“
Wi =y ¥ GO, 23)

g=0 =0

where & = xja, n = y/b, p is the degree set of polynomial space, C, arc the unknown
cocflicients and

(g+Dg+2)
r= - "=

P (24)
@, (. n) = (&' Y (En). (25)
The basic function @, (&, ) is defined as
4
® (&) = [TICEm™ (26)

t=|
in which [, is the boundary equation of the ith supporting edge, and Q, takes on 0, | or 2
corresponding to a free, simply-supported or clamped edge, respectively.

For the cantilever trapezoidal plate considered here, the basic function is simply given
by

(G =0+ (27)

If the plate has N point supports cither along its edges or internally, the deflection
surface has to be constrained as

W,=0, i=123..... N, (28)

where W, is the deflection at the ith point support. The constraints may be satisfied by
augmenting the functional, F, of eqn (22) to
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v
F*=V—-T+3Y AW/(i.n). (29)

=1

where A, are the Lagrangian multipliers and (<. n,) are the position coordinates of the point
supports.

The minimization of the augmented functional, F*, with respect to C, and A, leads to
the governing eigenvalue equation

([ ST SDE -Gt

where (C} = {C\.Cs..... Ca% A = AL AL Ay}, and the elements in the matrices

l 102 0 1a 1007
Ki= D\ \R"" + DR + D (R + RI™)

"Dy
+2D (R + R 2D (R + R +4DG R L (BD)
13 SN
oot B (32)
D, 1201 —vypvyy)
L,=®(.n). g=1.2..... N, (33)
M, = R 34)
and

ey [ . ]
= [T Jaen 05

inwhichij = 1,2,...,mand mis the number of polynomial terms in a pth degree set which
is equal to (p+ D(p+2)/2.

For vibration analysis, the cigenvalues are obtained by solving the sct of homogencous
cquations (30). Back-substitution yields the coefficient vectors: substitution of these
coeflicient vectors into eqn (23) gives the mode shapes of the plate.

4. NUMERICAL EXAMPLES AND DISCUSSION

Several examples have been selected to demonstrate the applicability and accuracy of
the proposced method. In this paper, symmetric angle-ply trapezoidal plates with different
stacking scquences, angle of fibre orientations, number of layers and location of point
supports are considered. The eigenvalues obtained for the cxamples are expressed in terms
of the non-dimensional frequency parameter (phwa*/D,)"2. In order to compare the
results published by Liew and Lam (1992). the same graphite/cpoxy (G/E) composite is
chosen. The detailed material propertics of graphite/epoxy (G/E) composite are given in
Table 1.

Table 1. Material propertics of graphite/cpoxy (G/E) composite

Material E, (GPa) E. (GPa) G, (GPa) Vis
G/E 138 8.96 7.1 0.30
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(a) (b)

Fig. 3. Boundary conditions for the point supported trupezeidal plates under investigation.

4.1. Centrally-located point supports

The first sct of problems considered is a cantilever, laminated trapezoidal plate
(a/b = 1) with the edge clamped at y = —1;2 which is continuous over a centratly-tocated
point support (x = 0, v = 0) as shown in Fig. 3(a).

Initially, the method is applied to solve the same problems as presented previously by
Liew and Lam (1992) which are the cight-ply laminated plate with stacking sequence of
(0,90 .90, 0], and 16-ply with stacking scquence of [(0 7,45, —457,90°),],.,. By using
the degree set of p = 10 in the deflection function, the results are obtiained and tabulated
in Table 2 together with the solutions of Liew and Lam (1992). It can be scen that the
present results and those values of Liew and Lam are in close agreement,

Two new examples are included in this section. The convergence patterns of the
frequency parameters for (a) an cight-ply [22.5°, =22.5", 67.5 , —=67.5 ],,. and (b) a 16-
ply [(30°, =30, 60, —60),],,,, laminated trapezoidal plates (o/h = |, ¢/a = 2/5) are given
in Table 3. It can be seen that, for both cases, convergent results are obtained when p = 10,
The displacement contour plots of the first six mode shapes for the cight-ply and 16-
ply laminated trapezoidal plates with ¢/a = 2/5 and 4/5 are presented in Figs 4 and 5,
respectively.

4.2. Point supports located on the edye
The second set of problems considered is also a cantilever, laminated trapezoidal plate

(u/b = 1) with the edge clumped at p = —1/2 [sce Fig. 3(b)] but now with two point
supports located (a) for c/a=25atx = —1/S, y=1/2and at x = |/5, y = 1/2, and (b)
forcja=4/Satx = =2/5 y = 1,2and x = 2/5, y = 1/2, respectively.

Table 2. Comparison of [requency parameters (pha’a®iD,)'? Tor symmetric angle-ply
trapezoidal plates with i centrally-located point support (a/b = 1)

Mode sequence number
3 4 5 6

19

cla Source |

(a) (0,90 ,90,0))

wym

s Liew and Lam 849 K67 26.58 2781 48.79 56.33
- Present 8.49 8.70 26.61 27.81 48.83 56.36
45 Liew and Lam 5.18 6.69 19.79 20.94 30.04 48.88

’ Present 5.18 6.69 19.80 20.96 0.1t 48.96

(b) {10 45 —d45 .90 )],

25 Liew and Lam 8.67 1128 30.61 3186 45.74 61.30
- Present 8.67 11.28 30.65 31,90 4581 61.48
45 Liew and Lam 6.90 7.49 21.28 2319 4295 45.21

Present 6.90 7.51 2133 24.01 4297 45.32
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Table 3. Convergence patterns of frequency parameters (piey'a* D)~
for symmetric angle-ply trupezoidal plates with a centrally-located point
support (ub =1, ca=273)

Dregree Mode sequence number
p 1 2 3 4 3 6
(a) [(22.5, ~2235.67.5.-67.5 )|um
7 9.10 11.76 30.43 3291 49.27 61.76
8 9.05 175 29,68 32,50 4913 61.31
9 9.04 175 2962 32.48 49.07 61.14
10 9.03 11.75 29.60 3248 49.06 61.12
(b)Y [(30 . =20 .60 . —60).).,m
7 7.87 12.13 3188 3315 $1.26 61.28
8 7.84 12.13 LIS 3281 4124 61.19
9 7.83 12.12 31.08 3278 4119 61.17
10 7.83 12.12 31.07 3278 3019 6l.16
=9.03 =11.75 =2060 VA, =3248 J‘ 49.06 =61.12
(a) cla=2/5
Vi, =6.76 =8.40 =2088 VX =2467 VA,=4111 VA =4586
(b) c/a=4/5

Fig. 4. Contour plots for the mode shapes of the cight-ply (£ centrally point supported
(x =0, y =0) Liminated trapezoidal plate (0 b = 1) with stacking sequence of [22.5, =225,

675, —67.5 |,

\f‘ =783 =12.12 =31.07 =32.78 \f‘ 41.19 =61.16
(a)c/a=2/5

VA, =6.68 VA, =7.710 =21.96 = 24.41 \/—4137 VA = 48.02
(b)cla=4/5

Fig. 5. Contour plots for the mode shapes of the 16-ply G E centrally pointsupported (x = 0, y = 0)
laminated trapezoidal plate (a/h = 1) with stacking sequence of [30 . =30 60 . ~60 ), ..
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Table 4. Comparison of frequency paramcters (phw’a® D,)'* for symmetric angle-ply
trapezoidal plates with two point supports located at x = —1/5, y = 1,2 and at x = [,§,
y=12(@@b=1)

Mode sequence number
3 4 5 6

()

c/a Source |

(@ [(0.90.90,0)},m
25 Liew and Lam  [2.19 15.78 33.27 40.16 42.56 53.00

Present 12.20 15.83 33.28 40.18 42.64 53.11
45 Liew and Lam 8.84 13.69 18.59 27.15 3592 44.27
Present 8.84 13.70 18.63 27.23 36.01 44.30

(b) [(07, 457, —45°, 90%):]\ym
2s Liew and Lam 173 18.37 33.05 45.43 45.85 56.36

Present 11.73 18.40 33.07 45.43 4591 56.41
4/s Liew and Lam 9.48 15.48 18.01 36.29 38.17 47.68
Present 9.48 15.48 18.04 36.37 38.23 41.72

Similarly, two known examples (Liew and Lam, 1992) are solved to verify the accuracy
of the present approach. There are the laminated plates with the stacking of: (a) [(0", 90,
907, 07)]ym and (b) [(0°. 457, —45°, 90°),],,m. The results obtained using p = 10 and the
published values are given in Table 4. It is evident that the comparison is shown in good
agreement.

Again, two new examples are considered here. Table 5 shows the convergence of the
frequency parameters for (a) an eight-ply [22.5°, —22.5°, 67.5", —67.5]ym. and (b) a 16-
ply [(30°, = 307,60, —60°),],, laminated trapezoidal plates (a/h = |, c/a = 2/5). Similarly
convergent solutions for the first six modcs can be obtained when p = 0. The mode shapes
for the two laminated trapezoidal plates with ¢/a = 2/5 and 4/5 arc presented in Figs 6 and
7 together with the relevant frequency parameters given below ecach mode shape.

5. CONCLUSIONS

The paper presents some new vibration solutions for symmetric angle-ply trapezoidal
plates continuous over point supports of arbitrary distribution. A hybrid ph-2 Rayleigh-
Ritz-Lagrangian multiplier method was proposed to solve the aforementioned plate prob-
lems. The method has been shown to give accurate frequency parameters and mode shapes
for these plates through the comparisons and convergence tests.

From the present study, it is concluded that different numbers of layers and com-
binations of fibre orientations may affect the vibratory response for the plate problems
considered.

It should be remarked that the proposed method is capable of analysing symmetric
angle-ply plates or arbitrary shape and any combinations of boundary conditions. It can

Table 5. Convergence patierns of frequency parameters (phw’at/D,) ' for
symmetric angle-ply trapezoidal plates with two point supports located at
x==1/S5,y=12andatx = 1/5,y = /2 (a/b = |, ¢[u = 2/5)

Degree Mode sequence number
P 1 2 k} 4 5 6

(a) [(22.5°, =22.5",67.5", ~67.5))ym

7 1267 18.68 3252 4583 4721 60.83
8 1267 1867 3225 4543 4622 5788
9 1266 1867 3223 4535 4620  51.57
10 1266 1867 3222 4535 4618  S7.55
() {(30". =30", 60°, =60 )],
7 10.52 1900 3166 4506 4581  62.04
8 10.51 1900  31.60 4442 4551  $59.69
9 1.5l  19.00  31.56 4438 4549  59.35
10 10.50 1900 3156 4438 4549  59.35

SAS 29:24-C
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VK, 21266 VK, =1867 VKj=3222 VR,=d535 VA;=46.18 YAy =57.55
(a)cla=2/5

O BT RY

VA =945 X, =1591 21852 VA,=3240 VX,=40.24 A =48.24
(b) c/a=4/5

Fig. 6. Contour plots for the mode shapes of cight-ply G/E laminated trapezoidal plate (a/b = 1)

having two point supports located at: (@) x = — /5, y = /2and x = 1,5,y = /2 (¢/a = 2/5), and

(b) x = =2/5, vy = 1/2and x = 2/5, y = [/2 (¢/u = 4,5) with stacking sequence of [22.57, -22.5",
67.5, —67.5)\\m

=y

=10.50 =18.99 ﬁ;=31.56 JT‘=44.37 J)Ts=45.49
(a)cla=2/5

B8 B

V&, =9.32 =1572  VA;=17.57 VX, =361 =3662 VA =48.70
(b) cla=4/5

Fig. 7. Contour plots for the mode shapes of 16-ply G/E laminated trapezoidal plate (a/bh = 1)

having two point supports located at: (a) x = ~1/5, y = /2 and x = /5, y =172 (¢/ua = 2/5),

and (b) x = =2/5 v = 1/2uand v = 2/5, v = 1/2 (¢/u = 4/5) with stacking sequence of [(30°, =30,
60 . —60 )] m-

also be employed to perform the bending and buckling analyses of symmetric angle-ply
plates with the appropriate energy functionals.
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